Search results for " Foraging behavior"

showing 4 items of 4 documents

Hyperparasitoids exploit herbivore-induced plant volatiles during host location to assess host quality and non-host identity

2019

Although consumers often rely on chemical information to optimize their foraging strategies, it is poorly understood how top carnivores above the third trophic level find resources in heterogeneous environments. Hyperparasitoids are a common group of organisms in the fourth trophic level that lay their eggs in or on the body of other parasitoid hosts. Such top carnivores use herbivore-induced plant volatiles (HIPVs) to find caterpillars containing parasitoid host larvae. Hyperparasitoids forage in complex environments where hosts of different quality may be present alongside non-host parasitoid species, each of which can develop in multiple herbivore species. Because both the identity of th…

0106 biological sciencesFood ChainSDG 16 - PeaceForagingWaspsContext (language use)010603 evolutionary biology01 natural sciencesMultitrophic interactionParasitoidPlant-Microbe-Animal Interactions–Original ResearchHost-Parasite InteractionsHyperparasitoid foraging behaviorFourth trophic level organismsMultitrophic interactionsFourth trophic level organismButterflieAnimalsNon-host parasitoid specieHerbivoryLaboratory of EntomologyEcology Evolution Behavior and SystematicsTrophic levelPieris brassicaeHerbivorebiologyHost (biology)EcologyAnimal010604 marine biology & hydrobiologySDG 16 - Peace Justice and Strong InstitutionsnationalHost-Parasite Interactionbiology.organism_classificationCotesia glomerataPE&RCLaboratorium voor Entomologie/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsJustice and Strong InstitutionsPlant-based food webLarvaEPSButterfliesNon-host parasitoid speciesOecologia
researchProduct

The response of an egg parasitoid to substrate-borne semiochemicals is affected by previous experience

2016

AbstractAnimals can adjust their behaviour according to previous experience gained during foraging. In parasitoids, experience plays a key role in host location, a hierarchical process in which air-borne and substrate-borne semiochemicals are used to find hosts. In nature, chemical traces deposited by herbivore hosts when walking on the plant are adsorbed by leaf surfaces and perceived as substrate-borne semiochemicals by parasitoids. Chemical traces left on cabbage leaves by adults of the harlequin bug (Murgantia histrionica) induce an innate arrestment response in the egg parasitoid Trissolcus brochymenae characterized by an intense searching behaviour on host-contaminated areas. Here we …

0106 biological sciencesTrissolcus basalisLong-Term-Memory; Nezara viridula; Searching Efficiency; Trissolcus basalis; Foraging Behavior; Infochemical Use; Natural enemiesMaleOvipositionForagingNatural enemiesWaspsBrassicaBiology010603 evolutionary biology01 natural sciencesArticlePheromonesParasitoidHost-Parasite InteractionsTRISSOLCUS BASALISHeteropteraRewardAnimalsLong-Term-MemoryNatural enemiesHerbivoryLaboratory of EntomologyHerbivoreAppetitive BehaviorSex CharacteristicsMultidisciplinaryLONG-TERM-MEMORY NEZARA VIRIDULA SEARCHING EFFICIENCY TRISSOLCUS BASALIS FORAGING BEHAVIOR INFOCHEMICAL USE NATURAL ENEMIESEcology017-4017fungiNezara viridulaTrissolcus basaliForaging Behaviorbiology.organism_classificationLaboratorium voor EntomologieSearching EfficiencyPlant Leaves010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataNezara viridulaInfochemical UseFemaleScientific Reports
researchProduct

Nectar-Inhabiting Bacteria Affect Olfactory Responses of an Insect Parasitoid by Altering Nectar Odors

2022

AbstractFloral nectar is ubiquitously colonized by a variety of microorganisms among which yeasts and bacteria are the most common. Microorganisms inhabiting floral nectar can alter several nectar traits, including nectar odor by producing microbial volatile organic compounds (mVOCs). Evidence showing that mVOCs can affect the foraging behavior of insect pollinators is increasing in the literature, whereas the role of mVOCs in altering the foraging behavior of third-trophic level organisms such as insect parasitoids is largely overlooked. Parasitoids are frequent visitors of flowers and are well known to feed on nectar. In this study, we isolated bacteria inhabiting floral nectar of buckwhe…

Science & TechnologyPESTSEcologyDIVERSITYSoil ScienceParasitoid foraging behaviorEnvironmental Sciences & EcologyATTRACTIONWILDMicrobiologyPLANT VOLATILESFLORAL NECTARNectar-associated microbeMarine & Freshwater BiologyHABITAT MANAGEMENTFLOWERConservation biological controlFagopyrum esculentumLife Sciences & BiomedicineTrissolcus basalisBIOLOGICAL-CONTROLEcology Evolution Behavior and SystematicsNectar-associated microbes
researchProduct

Behavioral response of the egg parasitoid Ooencyrtus telenomicida to host-related chemical cues in a tritrophic perspective

2010

The response of the generalist egg parasitoid Ooencyrtus telenomicida (Vassiliev) (Hymenoptera: Encyrtidae) to host-related chemical cues from tomato plants, Solanum lycopersicum L., and adults of Nezara viridula (L.) (Heteroptera: Pentatomidae) was investigated in laboratory-based no-choice and paired-choice tests. In Y-tube olfactometer experiments, when female wasps were exposed to volatiles from plants in different conditions, they were attracted only to volatiles produced by N. viridula adult-infested tomato plants. When female wasps were exposed to adults of N. viridula, they were attracted to volatiles from virgin males, and, at a lower level, to volatiles from mated females in preov…

biologyTomato plants Nezara viridula Host location Foraging behavior Pheromone Kairomones Chemical footprintsfungifood and beveragesZoologyHymenopteraPentatomidaebiology.organism_classificationParasitoidSettore AGR/11 - Entomologia Generale E ApplicataOlfactometerNezara viridulaAnimal ecologyEncyrtidaeInsect ScienceKairomoneBotanyAgronomy and Crop ScienceBioControl
researchProduct